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Project Goals: The input error parameters required by data assimilation systems are a source of
uncertainty in the ensuing analysis. Errors in their specification may be alleviated with an adaptive
filtering approach as we developed for the GEOS-5 land data assimilation system.

Project Description: Data assimilation products are sensitive to input observation and model error
variances. With very poor input error parameters, assimilation analyses may be worse than model
estimates without assimilation. To examine this issue, a suite of experiments was conducted with
the GEOS-5 Land Data Assimilation System (G5-LDAS) using synthetic surface soil moisture
observations. Each assimilation experiment has a unique set of input error parameters that leads to
- ~N a unique pair of scalars:
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true error inputs. The
minimum estimation error is around 0.02 m3m-3, down from the open loop (no assimilation) value
of 0.035 m3m-3. The estimation error increases as the input errors deviate from their true values.
The figure also indicates where the estimation error surface intersects the open loop error. For
grossly overestimated error variances, the assimilation estimates of surface soil moisture are in fact
worse than the open loop estimates. Ultimately, the success of the assimilation (measured through
independent validation) suggests whether the selected input error parameters are acceptable.

Results: Adaptive filtering methods can assist with the estimation of input error parameters. The
central idea behind adaptive filtering is that internal diagnostics of the assimilation system should
be consistent with the values that are expected from input parameters provided to the data
assimilation system. The most commonly used diagnostics for adaptive filtering are based on the
observation-minus-forecast residuals or innovations (computed here as vi = E{y:; - H¢ Xi"}, where
E{‘} is the ensemble mean operator). For a linear system operating under optimal conditions, the
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lagged innovations covariance is
(1) E[Vt Vt-kT] = 81(,() (Ht Pt HtT + Rt)

where E['] is the expectation operator and 8y is the Kronecker delta. Equation (1) implies that the
innovations sequence is uncorrelated in time and that its covariance is equal to the sum of the
forecast error covariance H¢ P; HT (in observation space) and the observation error covariance R«
Now recall that the forecast error covariance P depends on the model error covariance Q. If the
innovations show less spread than expected, the input error covariances (Q and/or R) are too large,
and vice versa. Such information can be used for adaptive tuning of Q and/or R.

Alternative diagnostics are based on the analysis departures w = E{y:; - H: X;*} and the
(observation space) analysis increments u: = E{H(x«i* - X¢i")}. For linear systems under optimal
conditions we have

(2)  E[uevT] = H P H(T =1 Initialize: X,;*, Q1=Qq, 91, R4=Ry, 0q ¢=0r o=1
MA[u vT],=MA[HPHT],=MA[w vT],:=MA[R],=R,
T =

(3)  Elwevd] =R "’I Propagate model: X = f(Xq" Ayy) |
Equations (2) and (3) suggest a simple way of Forecast error cov.: P, =E{(x,; - E{x,; H%
estimating Q and R separately by tuning the Kalman gain: K, =PHHPH +R)"
input error parameters so that the output Analysis update: X=X+ K (v —Hiox,)
diagnostics on the left-hand-side of (2) and (3 -
matgch the right-hand-side error covgr)iances( : Innovations: Ve = By =Hox )

) 8 i i ) Analysis departures:  w, = E{y,; — H, x,;"}
This approach is employed in the G5-LDAS as Analysis increments: U, = E{H.(x,* - x, )}

summarized in the flow diagram to the right.

MALUVT = (1-)MAU VT, + yu v
MAW VT, = (1) MAW VT + 7w v
MAHPHT], = (1-)MA[HPHT],, + v HPH.

An example of the benefits of the adaptive

module is given in Figure 1. The adaptive [t=t1

estimation of input error parameters leads to MA[R] = (1-y) MA[R] 4 + YRy
improved estimates of surface soil moisture fy =BMA[UVT), /MAHPHT, | =0.02
regardless of initial error estimates, except for fo = MAw V'], /MAR], g ;(1)835
the case of severe underestimation of the input . £ =(145)1

) : g = tq g Max(Min(fy,foad fu)  |fmin =(1+3)
observation error variance. The poor o . £ =(143)

. . . . ORt = ORt1 max(mm(vafmax)vfmin) max

performance in this special case is due to ' : Oin =0.01
technicalities in the implementation and can tqy = Max(Min(aq ,tmax):%min) | %max=100

Ogt = Max(MiN(og ¢ %max):Omin) |

easily be avoided in applications.
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Qg = aqt Qp (and generate q;)
The adaptive filtering module will be used for Rt = ¢ Ry

estimation of retrieval error parameters of
NASA satellite products (such as surface soil moisture from AMSR-E) and for the development of a
SMAP Level 4 soil moisture assimilation product.
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